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The two sub-sections below use the abbreviation PK for the book by Prup-
pacher and Klett (1997). The subscripts ‘a’ and ‘w’ denote air and water,
respectively. Symbols that have already been defined in the main text are not
redefined here.

A Drag coefficient

With the Reynolds number defined as Re ≡ 2a|urel|/νa (where νa is the kine-
matic viscosity of air), the coefficient of drag, CD, is obtained by numerically
inverting the relation (PK, Equation 10-145):

Y =

6∑
m=0

BmX
m, (1)

where X = ln(CDRe2) and Re = exp(Y ). This formula is originally from Beard
(1976) and is based on the drag coefficient of a solid sphere. The validity of
this rests on two assumptions. The first is that the droplet does not distort
significantly from being spherical. The equilibrium aspect ratio of a falling
raindrop is given by PK (Equation 10-108):

b

a
=

1− 0.11We

1 + 0.11We
. (2)

Here We ≡ 2aρau
2
rel/γw/a is the Weber number, where γw/a is the surface tension

of water in air. For nozzle 1 and the IFR case, the smallest value of b/a was 0.9
which occurred at early times for a droplet which quickly fell below the vortex.
We conclude that droplet deformation is negligible particularly for those droplets
that remain with the vortex pair. The second assumption is that the ratio of
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Figure 1: Comparison of three formulas for the drag coefficient of a solid sphere.

dynamic viscosities, ηa/ηw ≈ 1.8× 10−2 is small. In the creeping flow limit, the
Hadamard-Rybczynski formula (see Beard 1976) for the drag of a water sphere
divided by the drag of a solid sphere is

FD

FDs
= 1− ηa/3ηw = 0.995. (3)

Numerical solutions (PK, p. 388) indicate that for Re < 300, the drag coefficient
of a water sphere differs by less than ∼ 1% from that of a solid sphere.

Formula (1) is valid for Re < 500. Only for nozzle 4 was this condition
slightly exceeded for a few droplets. For Re ≤ 1.5, the explicit formula for solid
spheres (White, 1974, eq. 3-265) was found to agree well with (1) and was used
instead. We have also implemented but not used the Schiller and Naumann
explicit drag formula for a solid sphere (e.g., Apte et al., 2003)

CD =
24

Re

(
(1 + 0.15Re0.687

)
(4)

which is said to be accurate to within 5% for Re < 800. Figure 1 compares the
three formulas for CD up to the maximum value of Re = 800 we allow in the
code. It suggests that in the future it would be as accurate to use the explicit
Schiller and Naumann formula, which is cheaper to compute.

B Evaporation model

The evaporation model uses appropriate formulas from PK. These formulas are
collected here to document the choices we have made and also because they are
scattered throughout the book. Gas kinetic effects and the Kelvin curvature
effect are neglected since we remove droplets when their radii fall below 20 µm.
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Throughout, TC denotes centigrade temperature:

TC = T − 273.15. (5)

Note that there are 100 Pa in a mb. Subscripts ‘a’ and ‘w’ denote air and water,
respectively.

B.1 Properties of air, liquid water, and water vapor

Given the universal gas constant, R = 8.3144 J K−1 mol−1, and the molar mass
of dry air, Ma = 28.9644× 10−3 kg mol−1, the gas constant for air is

Ra = R/Ma. (6)

The density of air is calculated from the ideal gas law:

ρa = p/RaT. (7)

The density of liquid water at p = 1 atm is given by (PK 3-13):

103ρw =

∑5
m=0AmTC

m

1 +BT
g cm−3, 0 ≤ TC ≤ 100, (8)

with A0 = 999.8396, A1 = 18.224944, A2 = −7.922210×10−3, A3 = −55.44846×
10−6, A4 = 149.7562 × 10−9, A5 = −393.2952 × 10−12, B = 18.159725 × 10−3.
The thermal diffusivity of air is

κa = ka/ρaCp, (9)

where the conductivity is given by (PK 13-18a):

ka = (5.69 + 0.017TC)× 10−5 cal cm−1 s−1 K−1. (10)

Note that there are 4.184 J per cal. The heat capacity of air is:

Cp = 1006.1 J kg−1 K−1. (11)

The diffusivity, Dv, of water vapor is calculated using Equation (PK 13-3):

Dv = 0.211

(
T

T0

)1.94(
p0
p

)
cm2 s−1, (12)

with T0 = 273.15 K and p0 = 1013.25 mb. The dynamic viscosity of air is (PK
10-141)

ηa = (1.718 + 0.0049TC)× 10−4 poise, TC ≥ 0. (13)

The Schmidt number of vapor is defined (PK , p. 538) as

Scv ≡ νa/Dv, (14)

where νa = ηa.ρa is the kinematic viscosity. The Schmidt number for heat is

Sch ≡ νa/κa. (15)
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B.2 Evolution of droplet radius

The evolution of droplet radius a(t) is given by:

a
da

dt
=

(
a
da

dt

)
0

fv, (16)

where fv, called the ventilation coefficient, represents the enhancement of evapo-
ration rate due to advection of air past the droplet, and ()0 represents a quantity
in the absence of advection.

Let Re = 2aUrel/νa denote the Reynolds number based on droplet diameter

and drop speed Urel relative to the air. Defining F ≡ Sc1/3v Re1/2, the ventilation
coefficient is given by (PK 13-60) and (PK 13-61):

fv =

{
1.00 + 0.108F 2, F < 1.4;

0.78 + 0.308F, 1.4 ≤ F < 51.4.
(17)

The first factor on the RHS of (16), which represents evaporation in the absence
of advection, is given by(

a
da

dt

)
0

=
DvMw

Rρw

(
e∞
T∞
− esat(Ta)

Ta

)
, (18)

where Dv is the vapor diffusivity (which we evaluated at ambient conditions
using equation 12), Mw = 28.97 gm mol−1 is the molecular mass of water, e∞ is
the vapor pressure in the ambient, T∞ is the ambient temperature, and esat(Ta)
is the saturation vapor pressure evaluated at the surface temperature Ta of the
droplet. For esat(T ) we use the expression (Sonntag, 1994, eq. 7)

esat(T ) = 100 exp

(
4∑

m=1

amT
m−2 + a5 lnT

)
Pa, 173.15 ≤ T ≤ 373.15, (19)

with a1 = −6.0969385×103, a2 = 1.6635794×101, a3 = −2.711193×10−2, a4 =
1.673952× 10−5, a5 = 2.433502.

B.3 Temperature at the droplet surface

The internal energy of the water droplet is:

q = mCwTa, (20)

where m is its mass, Cw = 4.187×103 J kg−1 K−1 is the heat capacity of water,
and Ta is its temperature, which we have taken to be uniform and equal to the
value at the surface. The internal energy of the drop increases due to diffusion
of heat at its surface and release of latent heat (PK 13-65):

dq

dt
= 4πfhaka(T∞ − Ta) + Le

dm

dt
, (21)
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where Le is the latent enthalpy of evaporation of pure water evaluated at the
surface temperature of the drop. The dependence of Le on centigrade temper-
ature TC is:

Le =
(
2500.8− 2.36TC + 0.0016TC

2 − 0.00006TC
3
)
× 103 J kg−1. (22)

Substituting (20) into (21) gives

dTa
dt

=
3fhka∞
Cwa2ρw

(T∞ − Ta) + 3(Le/Cw − Ta)
1

a

da

dt
. (23)

Here fh is the ventilation coefficient for heat: it is given by the same expression

as (17) except with F = Sc
1/3
h Re1/2, where Sch is the Schmidt number for heat.

C Upper bound for the rate of coagulation

Here we briefly address the issue of droplet coagulation, which was raised by
the second referee. First, recall that for a given volume, droplet coagulation
improves radar reflectivity until the radius of droplets becomes larger than about
200 µm, at which point they begin to descend faster than the wake. Let n1
and n2 denote the number density of droplets in radius bins [a1, a1 + da1] and
[a2, a2 + da2], respectively. The rate ṅ12 (per unit volume) at which droplets in
the two groups combine is expressed as

ṅ12 = n1n2K(a1, a2), (24)

where K(a1, a2) is called the coagulation kernel. Although the subject is still
evolving, there has been progress in developing models for K(a1, a2) in turbu-
lent flow; we employ the one given in Riemer and Wexler (2005). It requires two
parameters to characterize the turbulence, namely, the rate of dissipation (εt)
of turbulent kinetic energy per unit mass, and the rms of velocity fluctuations
(urms). Data presented by Ahmad and Proctor (2012) for five days in August
1995 at Memphis International Airport show that in the absence of thunder-
storms, diurnal peak values were εt ≈ 2 × 10−3 m2 s−3 and urms ≈ 1.4 m s−1

(their Figures 13 and 14). We produced a plot of K(r1, r2) for this case and
it indicated a maximum value of Kmax = 7.9 × 10−6 m3 s−1. The rate of all
coagulation events (per unit volume) is

ṅcoagulations =
∑
ij,j≥i

ninjK(ai, aj) ≈
1

2

∑
ij

ninjK(ai, aj)

≤ 1

2
Kmax

∑
ij

ninj =
1

2
Kmaxn

2, (25)

where
n ≡

∑
i

ni, (26)

6



is the total number density. The approximation sign becomes an equality in the
continuous limit. We therefore obtain the upper bound

ṅcoagulations ≤
1

2
Kmaxn

2. (27)

The peak value of n in our simulation (for the IFR case) is ≈ 250 m−3. Therefore
ṅcoagulations ≤ 0.25 m−3 s−1, which implies ≤ 36 coagulation events per m3

during the 144 s of wake evolution time corresponding to a distance of 6 nm
behind the aircraft. During convective activity in the atmosphere, the data of
Ahmad and Proctor (2012) give εt = 1000 cm2 s−3 and urms = 4.2 m s−1 for
which we find that Kmax = 6.5 × 10−6 m3 s−1. This value is surprisingly less
than for the previous case considered (the reason for which is not understood).
We conclude that in future studies, coagulation should be included. However, on
the basis of the above estimates, we do not expect its effect on radar reflectivity
to be catastrophic in most situations.

D dBZ values

Designers of rain and cloud radars usually want to know the value of dBZ they
should design a radar system to detect. Here

Z(x) ≡
N∑
i

D6
i /Vol(x), (28)

where Vol(x) is the volume of a region centered at x, Di is the diameter of
the ith droplet in the volume, and N is the number of droplets in the volume.
To be meaningful, Z(x) must be independent of Vol(x) for the range of radar
resolution volumes considered. This might be true for a large patch of rain
or cloud. However, it is not true in the present case: both the outer size of
the droplet spiral and its inner length scale (the characteristic distance between
spiral turns) is in the range of typical radar resolution volumes. With this
caveat, Figure 2 presents plots of dBZ for the IFR (high humidity) and non-
IFR (average humidity) cases considered in the paper. Here Z has units of mm6

m−3 and Vol(x) was taken to be the cylindrical resolution volume centered
at x with length equal to cτ/2 and radius equal to R(x)θb, with τ = 0.2 µs
and θb = 0.52◦. The range R(x) is measured from the radar location whose
coordinates are (xrad, yrad, zrad) = (6 nm,−0.67 nm,−582 m) relative to the
aircraft.

E Can airborne radar detect a spray trail?

Figure 3a shows SNR1 for a Collins WXR-2100 airborne radar located at x = 6
nm behind the generating aircraft and at z = 0 (the altitude at which the
vortex was generated). The radar parameters are: f = 9.33 GHz, peak power,
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Figure 2: dBZ(x) with Z in mm6 m−3 using cylindrical volumes of length cτ/2
and radius R(x)θb with τ = 0.2 µs and θb = 0.52◦. (a) IFR humidity (RH =
92.7%, T = 15.2 C). (b) Non-IFR humidity (RH = 60%, T = 21 C). Nozzle 1.

Figure 3: Simulated SNR1 for the Collins WXR-2100 airborne weather radar
located above the wake at x = 6 nm behind the aircraft and pointed downward.
Pulse widths: (a) τ = 1 µs; (b) τ = 0.2 µs. IFR humidity: RH = 92.7%,
T = 15.2 C. Nozzle 1.
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Pt = 150 W; beamwidth, θb = 10◦; receiver noise figure, NF = 3.8 dB. The
shortest available pulse width of τ = 1 µs was chosen. Waveguide and finite
bandwidth loss factors were chosen to be the same as that for the radars listed in
Table 4 of the paper. For simplicity, the antenna is pointed straight downward,
whereas in reality it would be tilted downward at a smaller angle relative to the
fuselage; this would result in a larger range and less SNR1. Figure 3a shows that
to detect the spray trail, both resolution and sensitivity needs to be improved
from their current values, the latter by at least 26 dB. Figure 3b shows that
resolution is improved if a τ = 0.1 µs pulse is provided, however, this would
require the sensitivity to be improved even more. Another issue to keep in mind
is the highly non-steady nature of the target arising from motion of the airplane.
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